EXERCISES FUCHSIAN DIFFERENTIAL EQUATIONS FALL 2022

Herwig HAUSER

33 Let $r \in \mathbb{C}(x)$ or $\mathbb{Q}(x)$ be a rational function in one variable x. Describe a primitive

$$
s=\int r \text { of } r
$$

by using the Hermite decomposition of r, say, the partial fraction expansion.
Ref. https://en.wikipedia.org/wiki/Partial_fraction_decomposition
34 (a) Let a and b be power series in $\mathbb{Z}[[x]]$ such that

$$
e^{a(x)} \cdot b(x) \in \mathbb{Z}[[x]]
$$

is a power series with integer coefficients. What can you conclude about a and b ?
(b) Solve $y^{\prime}=y$ in characteristic $p=2$ in the differential ring $\mathbb{F}_{2}\left(z_{1}, z_{2}, \ldots\right)((x))$, where

$$
\left(z_{k+1}\right)^{\prime}:=\frac{1}{x} \cdot \frac{1}{z_{1} \cdots z_{k}} .
$$

(c) Show that, in characteristic 0 , the iterated $\operatorname{logarithm} \log ^{[k]}(x):=\log (\cdots(\log (x)) \cdots)$ satisfies the same differentiation rule as in (b).

35 Let $r \in \mathbb{Q}(x)$ be a rational function. Try to solve explicitly

$$
y^{\prime \prime}=r y .
$$

Remark. Hopefully you can find at least some interesting specific r 's for which you can solve the equation. Then check for these equations whether the solutions found have integer coefficients.

36 Christmas Challenge: Prove Bézivin's conjecture for order 1 differential equations.
If $y(x) \in \mathbb{Z}[[x]]$ is a solution with integer coefficients of a first order equation

$$
y^{\prime}=r(x) y
$$

for $r \in \mathbb{Q}(x)$ a rational function, then $y(x)$ is already an algebraic series.

